Abstract

Mixed oxide thin films, such as yttria-stabilized zirconia, deposited by dual reactive magnetron sputtering on a non-rotating substrate show a typical microstructure of bended, or tilted columns. Two effects define the tilt. The first effect is the compositional gradient over each column which results in a different lattice spacing. To accommodate this difference, the column bends. As such, the chemical composition has a major influence on the final columnar tilt. The second effect is ballistic shadowing which is controlled by the pressure-distance product. At higher pressure-distances, this second effect plays a more prominent role, and a different behaviour of the columnar tilt as a function of the film composition is noticed. The experimental trends can be understood by the use of a particle trajectory code which provides the angular and energy distribution of the atoms to a ballistic aggregation Monte Carlo code simulating the resulting microstructure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.