Abstract
The titanium dioxide (TiO2) surface is suitable as a substrate for single-atom catalysts (SACs) for oxygen reduction reaction (ORR). As a common defect on TiO2, oxygen vacancies may have a significant impact on the adsorption and activity of the adatoms. This work aims to investigate whether titanium dioxide containing surface oxygen vacancies is more suitable as a base material for SACs. This paper calculates the changes in the adsorption energy of the Pt atom and the energy of the d-band center on the perfect surface and the surface containing oxygen vacancies. Concerning the perfect surface, the surface containing oxygen vacancies fixes the Pt atom more firmly and increases the center energy of the d-band of Pt, thereby improving the performance of the Pt atom as SACs. Consequently, the (110) surface of rutile TiO2 with oxygen vacancies may be the best substrate for SACs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.