Abstract

The online control system allows for automatic corrective response to unexpected perturbation. This corrective response may involve a prediction error between the sensory prediction by the motor command and the actual feedback signal. Therefore, we attempted to investigate the effect of motor command accuracy on the automatic corrective response. Participants were asked to move a cursor displayed on a monitor and required to reach the center of a Gaussian blob target as accurately as possible for small and large Gaussian blob conditions. The accuracy of the motor command was manipulated by the size of the Gaussian blob. In half of the trials, a perturbation occurred in which the cursor position jumped 10 mm to either the left or right from the actual position, which induced an automatic corrective response. This corrective response was detected by the acceleration signal on the lateral axis. In addition, the prediction error was estimated by the amplitude of the N1 event-related potential (ERP) of the EEG signal. We found that the automatic response and N1 ERP were significantly larger in the small Gaussian blob conditions than in the large one. This result indicates that the automatic corrective response is affected by the certainty of the motor command manipulated by the Gaussian blob. Furthermore, the linear mixed-effect model (LME) indicated that the response is associated with the N1 ERP. Therefore, we suggest that the motor command accuracy affects the prediction error, which in turn modulates the automatic corrective response.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call