Abstract

Vertically aligned ZnO nanorods arrays were synthesized on glass substrates. ZnO seed layers were prepared on the glass substrate by RF Sputtering technique. ZnO nanorods synthesized using low-cost chemical bath deposition method at low temperature (95 ºC). The effect of the different growth time such as (0.5, 1, 2, 3, 4 and 5) h on the morphology, elemental chemical composition and structure of the ZnO nanorods were obtained systemically, and tested by Field emission scanning electron microscopy (FESEM), Energy dispersive analysis (EDX), and XRD measurements. The results found that the ZnO nanorods with hexagonal wurtzite structure grow vertically on the glass substrates. Most of the prepared samples have strong and sharp (002) peak intensities and the diffraction peaks (002) become higher and narrower as growth time increasing, obtaining that the ZnO crystalline quality became better with growth time increasing. The growth rate was decreased with increasing growth time, and the high aspect ratio was found at 4 h as a growth time. The size, length and crystalline size of the ZnO nanorods increase with increasing growth time. Furthermore, the ZnO nanorods vertically grow at (002) direction along the c-axis on the glass substrate, with elementary chemical compositions of zinc and oxygen only for all prepared samples.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.