Abstract

The influence of the temperature and duration of ion exchange in BK7 silicate glass in CuSO4:Na2SO4 melt on the optical properties of the glass surface layers has been investigated. It is shown that ion exchange occurs from the melt according to the Cu2+ ↔ 2Na+ scheme. Cu2+ ions penetrate the sample to a depth of about 1 µm. Reduction of Cu2+ ions near the glass surface gives rise to the Cu+ ↔ Na+ ion exchange in the glass. Measurements of refractive index profiles in the glass sample subjected to ion exchange have revealed the formation of two waveguides in the sample: near the surface and at a depth of more than 3 µm; the second waveguide is formed by Cu+ ions. It is shown that relatively low temperatures and short durations of ion exchange lead to the formation of copper molecular clusters Cun in glass. An increase of ion exchange temperature and duration leads to decomposition of molecular clusters with formation of Cu2+ ions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call