Abstract

In this research, the influence of the cathode array and the pressure variations on the current sheath dynamics of a small plasma focus device (450 J) was investigated. For this purpose, the signals of an axial magnetic probe for two different gases (argon and nitrogen) were studied. The magnetic probe signals showed the slower movement of the current sheath layer when the number of cathode rods decreased. This was related to the increase in the circuit inductance, which caused the longer discharge time of the capacitor bank followed by the creation of runaway electrons. These electrons in turn produced the impurities that led to the appearance of the instabilities inside the plasma. On the other hand, in order to investigate the effect of the cathode array variation on the instabilities produced inside the plasma, the wavelet technique was used. With the aid of frequency analysis, this technique showed the increase in these instabilities, which was due to the non-uniform formation of the current sheath layer during the breakdown phase, and finally, the higher values of the pressure caused the slower movement of the current sheath due to the inverse relation of the current sheath velocity to the square root of the pressure.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call