Abstract

In this paper the results of temporally resolved measurements using calibrated azimuthal and axial magnetic probes are presented, together with interferometry and neutron diagnostics performed on the PF-1000 (IPPLM, Warsaw, 2 MA) device with a deuterium filling and 1011 neutron yield. The probes located in the anode front at three different radial positions allow determination of the dominant part of the discharge current flows behind the imploding dense plasma layer. The current sheath is composed of both the axial and azimuthal components of the magnetic field. After reaching the minimum diameter, the current sheath continues in a radial motion to the axis and then penetrates into the dense plasma column. At the final phase of stagnation, the dominant current passes through the dense column. The probes located on the axis of the anode front registered an increase and a decrease in the pulse of the axial component of the magnetic field in correlation with the formation and decay of the dense plasmoidal structure. The estimated values of the axial component of the magnetic field at the center of the plasmoids in the first neutron pulse and close before its decay and dominant neutron production can reach 2 and 10 T; it is 10–30% of the value of the azimuthal magnetic field of the dense column boundary.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call