Abstract

It is known that the percolation threshold of polyamide 6 (PA6)/multiwalled carbon nanotube (MWCNT) composites is higher than that of PA66/MWCNT composites under the same mixing conditions and melt viscosity. A series of blends of PA6 and PA66 containing 1 wt % MWCNTs have been prepared to investigate this phenomenon. At contents up to 20 wt % PA66, the blends were not electrically conductive. The electrical resistivity dropped to 109 Ohm∙cm for PA66/PA6 30/70 blends. The resistivity was 105 Ohm∙cm at higher PA66 contents. Differential scanning calorimetry was used to investigate the thermal behavior of blends. The glass transition temperature was almost constant for all blend compositions, indicating that the amorphous phases are miscible. The MWCNT addition influenced the crystallization of PA66 much more than the PA6 crystallization. A heterogeneous crystallization of the polyamide in PA66/PA6 blends took place, and the MWCNTs were mainly localized in the earlier crystallizing PA66 phase. Thus, the formation of the nanotube network and thus the electrical volume resistivity of the PA6/PA66 blends with 1 wt % MWCNTs is significantly influenced by the crystallization behavior. In PA66/PA6 blends up to 60 wt %, the more expensive PA66 can be replaced by the cheaper PA6 while retaining its electrical properties.

Highlights

  • Conductive or antistatic polymer materials may be produced through the addition of conductive multiwalled carbon nanotubes (MWCNTs) to insulating polymers using melt mixing.The electrical conductivity of such nanocomposites depends on the properties of the polymer matrix, the properties of the MWCNTs, and the relative loadings of the materials.Polyamides (PA) are partially crystalline thermoplastic materials that exhibit high dynamic load capacity, high rigidity and hardness, high impact resistance, and high wear, chemical, and heat-resistance

  • This finding correlates with the reports by Tomova et al [2], Ellis et al [3], and Wang et al [4] who found that polyamide 6 (PA6) and polyamide 66 (PA66) are miscible in the amorphous phase at all blend compositions

  • The aim of this study was to investigate the influence of blend composition on the electrical properties and the crystallization and melting behavior of melt-mixed PA66/PA6/MWCNT blend composites containing 1 wt % MWCNTs

Read more

Summary

Introduction

The electrical conductivity of such nanocomposites depends on the properties of the polymer matrix (notably viscosity, surface tension, and crystallinity), the properties of the MWCNTs (notably aspect ratio, surface functionalization, and dispersability), and the relative loadings of the materials. Polyamides (PA) are partially crystalline thermoplastic materials that exhibit high dynamic load capacity, high rigidity and hardness, high impact resistance, and high wear-, chemical-, and heat-resistance. The high melting temperature allows them to be used as material for applications at higher temperatures. They can be chemically modified and show good processability [1]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.