Abstract

Analytical codes dedicated to the analysis of Ion Beam Analysis data rely on the accuracy of both the calculations and of basic data such as scattering cross sections and stopping powers. So far, the effect of the beam charge state of the incoming beam has been disregard by general purpose analytical codes such as NDF. In fact, the codes implicitly assume that the beam always has the equilibrium charge state distribution, by using tabulated stopping power values e.g. from SRIM, which are in principle valid for the effective charge state. The dependence of the stopping power with the changing charge state distribution is ignored. This assumption is reasonable in most cases, but for high resolution studies the actual change of the charge state distribution from the initial beam charge state towards equilibrium as it enters and traverses the sample must be taken into account, as it influences the shape of the observed data. In this work, we present an analytical calculation, implemented in NDF, that takes this effect into account. For elastic recoil detection analysis (ERDA), the changing charge state distribution of the recoils can also be taken into account. We apply the calculation to the analysis of experimental high depth resolution ERDA data for various oxide layers collected using a magnetic spectrometer.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call