Abstract

In order to increase the peripheral speed of grinding wheels of size of Ø 500 × 18 × Ø 200 mm for precise hard metallic surface finishing from conventional 80 m.s-1 up to 138 m.s-1 while still ensuring their safety and reliability, the critical locations in the grinding wheel were evaluated using the finite element analysis. The microstructure of grinding wheel was revealed using the materialographic techniques and the scanning electron microscope images were recorded in the back-scattered electrons mode. The image analysis was used on recorded micrographs for separation of individual material components, i.e. an abrasive, a binder, and pores, and to extract their geometries and spatial relationships. Subsequently, the influence of different filling agents (Young's modulus of 5, 10, 20, and 40 GPa) was studied, considering both surface dipping and bulk filling treatments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.