Abstract
Cubic ZnTiO3thin films have been prepared by radio frequency magnetron sputtering on n-type (100) Si substrate at different temperatures. The morphological and optical properties of ZnTiO3films in relation to substrate temperatures are investigated by spectroscopic ellipsometry (SE) and AFM as well as SEM in detail. X-ray diffraction (XRD) measurement shows that all the films have a cubic phase structure and the optimum substrate temperature to form crystalline ZnTiO3thin film is 250 °C. Through SEM and AFM, the particle size in thin films and film surface roughness increase with increasing the substrate temperature. Based on a parameterized TaucLorentz dispersion model, the optical constants and surface roughness of ZnTiO3films related to the substrate temperature are systematically extracted by SE measurement. The surface roughness of the film measured from AFM agrees well with result extracted from SE, which proved that the established SE model is reasonable. With increasing substrate temperature, the refractive index decreases and the main factor in determining the refractive index was deduced to be the surface roughness related to the film packing density. The extinction coefficient of the samples is close to zero, but increases slightly with the increase of the substrate temperature, which is due to the enhancement of scattering effect in the crystalline ZnTiO3film.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have