Abstract

Abstract The structure of a steady, planar. premixed flame in a slowly expanding gas flow is analyzed. The reaction kinetics are represented by a mechanism consisting of a chain branching reaction and a chain breaking reaction. An asymptotic analysis is performed in the limit of a large value for the activation energy of the chain branching reaction, with the activation energy for the chain breaking reaction presumed to be zero. The analysis is valid for cases where the mass fraction of the intermediate species is of order unity, An analytical expression is obtained for the change of the mass burning rate with the Karlovitz number, the parameter characterizing flame stretch. This expression shows the role of differential diffusion of heat and the reactant, of differential diffusion of reactant and intermediate species and of enhanced diffusion of intermediates on flame propagation. It is seen that these three different effects may cancel each other. Depending on the parameter range the mass burning rate may be either decreased or increased.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.