Abstract

Abstract Abstract The mechanical properties, dislocation configurations and densities have been investigated in single crystals of copper deformed in the strain-rate range 10−4 to 104 sec−1. It was found that the flow stress of copper exhibits two regions of strain-rate sensitivity. Below strain rates of 103 sec−1 the flow stress was relatively insensitive to strain rate but above 103 sec−1 the flow stress is a sensitive linear function of the strain rate. However, the dislocation density and configurations versus strain were found to be almost independent of strain rate throughout the range 10−4 to 104 sec−1. There was a straight line relationship between the flow stress and the square root of the dislocation density at all strain rates. However, at a strain rate of 6·5 X 103 sec−1 there is a positive intercept τ0 on the stress axis at zero dislocation density. The term τ0 can be related to the damping process retarding dislocation motion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.