Abstract

The ambient atmospheric PM2.5 concentrations in Anhui Province, China, which links the Yangtze River Delta region, China's fastest growing economy area, with the Beijing-Tianjin-Hebei (BTH) region, China's most polluted region, are influenced not only by local emissions, but also by changes in regional circulation. During the period 2013–2017, when China adopted a series of pollution abatement measures, there were still occasional pollution episodes with significant increases in PM2.5 concentrations. PM2.5 rise instead during the period 2013–2017 in Anhui (the Center of the Yangtze-Huaihe, YH), when pollution emissions continued to decrease? What is the controlling mechanism behind these? By analyzing elements such as ground-based PM2.5 concentration and the planetary boundary layer (PBL) structure affecting it as well as larger scale circulation, combined with the analysis of a parameterized index, one can find that aerosol pollution in the YH region can usually be classified into three types. (1) There is a short-term transport stage (TS) in the initial stage of pollution, then as the pollutant concentrations increase, the PBL height decreases, the temperature inversion is gradually formed or strengthened, the wind speed decreases and the relative humidity of the lower layer increases, forming a two-way feedback mechanism in the cumulative stage (CS). (2) Pollutant concentrations will not drop rapidly in the later stage of CS, while a short-term TS will occur again. (3) The explosive rise (ER) events are mainly affected by transportation in the YH. The first of these types tends to be accompanied by the emergence and maintenance of heavy pollution periods (HPEs), and some phases is accompanied by explosive rises (ERs) in PM2.5 that at least double in a short period of time. To sum up, deterioration of meteorological conditions explaining approximately 68% to the increase in PM2.5 in the ER.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call