Abstract

AbstractThe paper describes a method of representing damage on a wing due to multiple warhead fragments, and investigates two of the key variables: fragment impact density and hole diameter. The aerodynamic effects of the damage were quantified by wind-tunnel tests on a two-dimensional wing at a Reynolds number of 5 × 105. The wing was of hollow construction with leading and trailing-edge spars. In all of the cases tested, simulated fragment damage resulted in significant lift losses, drag increases and pitching moment changes. Increasing fragment density or hole size resulted in greater effects. To a first order approximation, both lift and drag increments at a given incidence were related to the percentage wing area removed. Surface flow visualisation showed that low fragment densities and small damage sizes resulted in a complex flow structure on the surface of the wing. This was made up of boundary-layer growth between the damage holes, attached wakes from the forward damage holes and separated surface flow over the rear of the wing. For these cases, individual hole patterns showed similar flow mechanisms to those seen for larger scale gunfire damage cases. Increased fragment density and hole size resulted in upper surface flow separation at the first row of holes. Behind this separation, the flow was attached and consisted of the combined wakes from the forward damage holes. Investigations into the influence of internal model structure indicated that trends in coefficient changes were similar for both hollow and solid wings. However, the magnitudes of the effects were found to be smaller for hollow wings than for solid wings.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call