Abstract

A comprehensive study of film cooling on a turbine airfoil leading edge was performed with a documented, well-tested computational methodology. In this paper, numerically predicted heat transfer coefficients on the film-cooled leading edge are compared with experimental data from the open literature. The results are presented as the ratio of heat transfer coefficient with film cooling to that without film cooling, and the physics behind the surface results are discussed. The leading edge model was a half-cylinder in shape with a bluff afterbody to match the validation experiment, and other geometric parameters matched those of Part I of this study. Coolant at a density equal to that of the mainstream flow was injected through three rows of cylindrical film-cooling holes. One row of holes was centered on the stagnation line of the cylinder, and the other two rows were located ±3.5 hole diameters off stagnation. The downstream rows were staggered such that they were centered laterally between holes in the stagnation row. The holes were inclined at 20° with the surface, and made a 90° angle with the streamwise direction (radial injection). Four average blowing ratios were simulated in the range of 0.75 to 1.9, corresponding to the same momentum flux ratios as in Part I of this work. The multi-block, unstructured numerical grid was characterized by high quality and density, especially in the near wall region, in order to minimize error in predictions of the heat transfer. A fully-implicit scheme was used to solve the steady Reynolds-averaged Navier-Stokes equations, and a realizable k-ε model provided turbulence closure. A two-layer near-wall treatment allowed the resolution of the viscous sublayer for maximum accuracy in the prediction of the wall heat transfer coefficient. The numerical predictions exhibited generally good agreement with experimental data. The heat transfer coefficient was observed to increase sharply aft of the holes in the downstream rows. When coupled with the adiabatic effectiveness results of the first paper in this series, it is evident that a systematic computational methodology may be effectively applied to investigate and understand the complicated leading edge film-cooling problem.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call