Abstract

Abstract The article deals with the impact of selected external factors on the temperature of photovoltaic module surfaces. Primary aim of this research is creation of temperature model for photovoltaic module, which would be usable under the real climatic conditions in Central Europe region. Fully autonomous measuring system was designed and created for temperature monitoring of different parts of photovoltaic modules. The measuring system consists of 24 temperature sensors, voltage inverter, control unit, transfer modules, receiver modules and temperature measuring module. The experiments were performed on photovoltaic modules installed on the roof of the University of Life Sciences in Prague during summer 2018. The temperature of photovoltaic modules significantly depends on the climatic conditions, which were monitored by the weather station. The temperature and the solar radiation dependencies for polycrystalline and monocrystalline photovoltaic modules were obtained in experiments conducted. The temperature relations were measured for different parts of photovoltaic module – active parts of photovoltaic module, frame, non-active parts of photovoltaic module, as well as ambient temperature. Final mathematical description of polynomial graphical dependencies was obtained after application of fitting procedure and regression analysis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.