Abstract

In this article authors propose a temperature based Maximum Power Point Tracking algorithm (MPPT). Authors show that there is an optimal current vs maximum power curve that depends on photovoltaic (PV) module temperature. Therefore, the maximum power point (MPP) can be achieved in very few commutation steps if the control forces the PV module to work in temperature dependent optimal curve. Authors shows how this PV module temperature based MPPT is stable and converges to MPP for each temperature. In order to proof its stability, authors propose a Lyapunov energy function. This Lyapunov energy function has positive values for all values except into MPP given the PV module temperature. This Lyapunov energy function has negative increment along each time step. Hence, the stability of temperature based MPPT can be demonstrated. The proposed MPPT algorithm proposes a current set point. This current set point is obtained with instantaneous PV module power and temperature dependent maximum power vs optimal current curve. Stability is analysed for different temperature levels. Optimal current vs maximum power curve has been modelled by a line. The lines’ coefficients depend on PV module temperature. Proposed Lyapunov energy function is not symmetric about equilibrium or MPP because MPPT algorithm and PV module dynamic have no symmetric behaviour about this equilibrium point.

Highlights

  • In this article authors propose a temperature based Maximum Power Point Tracking algorithm (MPPT)

  • Its fundamental advantage based on neural networks for modelling is that no prior knowledge of the physical parameters related to the PV system is r­ equired[1]

  • An intermediate optical stage called temperature controller was introduced in the study to transport the temperature of the concentrated light and hereafter solar PV panel to Standard Test Conditions (STC).A MPPT based on variable step sized incremental conductance algorithm was inserted at load side to ensure the conditioned and better quality power at the output

Read more

Summary

Introduction

In this article authors propose a temperature based Maximum Power Point Tracking algorithm (MPPT). An intermediate optical stage called temperature controller was introduced in the study to transport the temperature of the concentrated light and hereafter solar PV panel to Standard Test Conditions (STC).A MPPT based on variable step sized incremental conductance algorithm was inserted at load side to ensure the conditioned and better quality power at the output. In Section Temperature based MPPT algorithm, authors propose a control law that profits the dependence of maximum power and optimal current for a given temperature.

Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call