Abstract
Deep-sea sediments enriched in rare earth elements and yttrium (REY-rich sediments) are widely distributed on the deep-sea floor, and their formation mechanism remains elusive. Although studies have recognized the link between seamounts and REY-rich sediments, in-depth analysis of the specific roles and effects of seamounts in the formation of REY-rich sediments is lacking. In this study, we analyzed surface sediments from the Marcus-Wake Seamounts for grain size, geochemistry, and mineral composition and classified the samples into three types: samples with moderate REY content and dominated by terrestrial detritus; samples with high REY and authigenic mineral content; and samples rich in CaCO3 but poor in REY. The REY in the sediments of the study area partly originate from Asian dust input and partly from seawater and/or pore water, and are mainly enriched in REY carrier particles including bioapatite fossils and micronodules. The amount of REY carrier particles influences the REY content in the sediments. The current field, primary productivity, weathering process, and depositional environment around seamounts are different from those of abyssal plains, which are conducive to the formation of REY-rich sediments. Strong bottom currents may exist in the southeastern direction of some large seamounts (e.g., Niulang Guyot), leading to the selective accumulation of REY-rich bioapatite fossils and micronodules, resulting in the formation of REY-rich sediments.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have