Abstract

An extension to the quantum-mechanical laser master equation for the density operator is derived to incorporate the beam-splitter effect caused by typical dielectric laser output couplers. This effect gives rise to a significant change in the photon statistical distribution of the part of the laser light reflected back into the resonator and, therefore, may have an influence on the total laser output photon statistics. Different cases without and with additional intra-cavity losses were discussed and their influence on the expected laser photon statistics was deduced. As a result, it was found that the well-known Poisson distribution of laser light is in most cases the result of additional losses or absorption, which act uncorrelatedly on single photons. In a laser with negligible additional losses where outcoupling is dominated by the beam-splitter effect, the photon statistics reveal to be mainly non-Poisson. A Poisson distribution would only occur for very low outcoupling rates, i.e., high finesse cavities. It is found that in the limit of strong outcoupling even the distribution of thermal light can result.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call