Abstract

Prior research reveal that low-viscosity resin is able to significantly penetrate initial caries lesions, which leads to their stabilization. The objective of the present report is to assess the shear bond strength (SBS) of orthodontic brackets bonded with different adhesives to demineralized enamel treated with a low-viscosity resin infiltrant. It also aims to compare the achieved bond strengths to those achieved in relation to sound enamel (SE). A total of 48 newly extracted third molars were collected, distributed in four groups (n=12), covered with a nail varnish, with 4 x 4 mm of uncoated area, immersed in Buskes demineralizing solution (14 days, 37 °C) or remained untreated. Group I: SE + Transbond XT; Group II: demineralized enamel (DE) + ICON + Transbond XT; Group III: DE + ICON + Scotchbond Universal; Group IV: DE + ICON + Assure PLUS. SBS was quantified in megapascals (MPa) and statistically analyzed (ANOVA, p ≤ 0.05). The mode of failure was assessed microscopically (10 x magnification). The highest SBS detected was in Group IV, and the difference was statistically significant (F = 14.37; p = 0.000). Treatment with a resin infiltrant on DE does not impair the shear bond strength when compared to SE, although it does produce a significantly higher strength when combined with Assure PLUS.

Highlights

  • White-colored alterations may appear as a result of pre- or post-eruptive disorder [1]

  • The aim of the present study was to assess the shear bond strength (SBS) of orthodontic brackets bonded with different adhesives to demineralized human enamel that had been treated with a low-viscosity resin infiltrant

  • A significantly higher SBS (F = 14.37; p ≤ 0.001) value was recorded in Group IV, in which the demineralized enamel was pretreated with ICON and the tubes were bonded with Assure PLUS

Read more

Summary

Introduction

White-colored alterations may appear as a result of pre- or post-eruptive disorder [1]. Post-eruptive alterations take place when the demineralization process is stronger than the remineralization process and they are usually addressed as white spot lesions (WSLs) [1]. The initial development of WSLs is present as a mineral loss in the bulk of the enamel, while the lesion surface remains mostly intact. The surface layer of the lesion becomes partially porous, which can result in a loss of transparency [2]. The fixed orthodontic appliances may enhance plaque accumulation and lead to the progress of both demineralization and caries lesions, especially in patients with inadequate oral hygiene [3,4,5]. The development of WSLs is related to

Objectives
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call