Abstract

The aim of this work was the characterization of polymer microspheres obtained by the suspension polymerization of divinylbenzene (DVB) and glycidyl methacrylate (GMA), depending on the pore-forming diluents and molar ratio of monomers. The assessed properties included the chemical and porous structure, thermal stability, and sorption capacity of the obtained polymers towards methylene blue. The abovementioned characteristic was carried out for two series of copolymers with molar ratios of monomers of 1:2, 1:1 and 2:1, synthetized with toluene and a mixture of decanol and benzyl alcohol. The structure of the polymers was confirmed by FTIR and elemental analysis. The results of TGA demonstrated the main influence on thermal stability was the composition of polymers, whereas the impact of porogens was negligible. The SBET varied in the range of 12-534 m2g-1 for polymers obtained with toluene and 0-396 m2g-1 with the mixture of alcohols. Toluene enhanced the formation of micro- and mesopores, while the mixture of alcohols enhanced the creation of meso- and macropores. For the polymers prepared with toluene, their effectiveness in water purification decreases in the following order: DVB-GMA 2:1 > DVB-GMA 1:1 > DVB-GMA 1:2, according to the decreasing values of porous structure parameters. In the case of a series obtained with a mixture of alcohols, such correlation was not observed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.