Abstract
DNA fragments (0.1-10 kbp (kbp, kilo base pair)) separation by square-wave pulsed field CE in hydroxyethylcellulose (HEC, 1300 K) polymer was performed in this work. The effects of polymer concentration, pulse field strength, pulse frequency and modulation depth were investigated. We found that low HEC (about 0.1%) concentration is suitable for the separation of small DNA fragments (<1 kbp), whereas higher HEC concentration (>0.5%) is appropriated for high-mass DNA molecular (>1 kbp) separation. The mobility of DNA fragments is nearly linearly related to average separation voltage under pulsed field conditions. Higher modulation depth is suited to separate the longer DNA fragments and lower modulation depth favors the resolution of short DNA fragments. Thus, the intermediate modulation depth (100%) and pulse frequency (about 31.3 Hz) are prerequisite for high-resolution DNA separation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.