Abstract

Based on our previous work of in-capillary denaturing polymer electrophoresis, we present a study of RNA molecular separation up to 6.0 kilo nucleotide by pulsed field CE. This is the first systematic investigation of electrophoresis of a larger molecular mass RNA in linear hydroxyethylcellulose (HEC) under pulsed field conditions. The parameters that may influence the separation performance, e.g. gel polymer concentration, modulation depth and pulse frequency, are analyzed in terms of resolution and mobility. For denaturing and separating RNA in the capillary simultaneously, 2 M acetic acid was added into the HEC polymer to serve as separation buffer. Result shows that (i) in pulsed field conditions, RNA separation can be achieved in a wide range of concentration of HEC polymer, and RNA fragments between 0.3 and 0.6 kilo nucleotide are sensitive to the polymer concentration; (ii) under certain pulsed field conditions, RNA fragments move linearly as the modulation depth increases; (iii) 12.5 Hz is the resonance frequency for RNA reorientation time and applied frequency.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.