Abstract
The research was conducted by the Chair of Agricultural Chemistry and Crop Farming of the Mari State University. The model experiment helped to study the influence of temperature, moisture, and density on nitrifying and ammonifying capacity of sod-podzol midclay low-humic soil. It was found out that change of physical properties factors of sod-podzol soil influenced nitrifying and ammonifying capacity and mineral nitrogen content. Maximum content of nitrate and mineral nitrogen and the biggest nitrifying capacity were at a soil temperature of +15°C and had the following corresponding values: 74.4, 81.3, and 31.9 mg/kg. Moistening conditions optimal for developing nitrifying and ammonifying bacteria were formed at a soil moisture of 20-25% (60-75% WFC). At this moisture there were the biggest figures of nitrifying capacity (31.5-35.0 mg/kg) and maximum values of content of nitrate nitrogen (74.0-77.5 mg/kg) and mineral nitrogen (78.7-82.3 mg/kg). Soil firming had a negative effect on the microflora of soil. With soil density increase from 1.1 to 2.0 g/cm3 nitrifying capacity decreased from 21.0 mg/kg down to 10.4 mg/kg, while nitrate nitrogen content in soil decreased from 63.5 to 32.1 mg/kg. The best conditions for nitrification and ammonification in sod-podzol soil were as follows: soil temperature of +15°C, soil moisture of 20-25%, and soil density of 1.1 g/cm3. Dependence of mineral nitrogen content in soil on its temperature and moisture was curvilinear and was described by a second-order regression equation, while dependence on its density was linear and was described by a first-order regression equation.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.