Abstract

This work is devoted to the dependence of particle size on magnetorheological properties of magnetorheological fluid (MRF) consisting of plate-like iron particles suspended in a carrier liquid with two aspects. One aspect is to study the influence of the particle size on the rheological properties of the MRF, and the other is to investigate the influence of small-sized particles on the large-sized MRF. In order to achieve this goal, firstly, two different types of MR suspensions have been constituted by a plate-like iron particle; one is small with an average particle size of 2 μm in diameter, and the other is large with an average particle size of 19 μm in diameter. In this work, these are denoted as S-MRF and L-MRF, respectively. Secondly, in order to check the influence of the small particle size of the large-sized MR fluid, three different weight fractions of bidisperse MRF samples are prepared. The structural and morphology of plate-like iron particles are described in detail. The magnetic properties of these MR fluids are carried out at room temperature using the magnetometer, followed by the investigation on the field-dependent rheological properties of these MR fluids. It is observed that in both the S-MRF and L-MRF, the yield stress and viscosity is increased by the increasing particle size, which directly shows a correlation with the fluid magnetization. It is also identified from the test of the bidisperse MRF samples that the yield and viscosity depend on the weight fraction due to the magnetostatic interaction between the two different sizes of particles. Based on the rheological properties, some figures of merit are derived for the proposed MRF samples, which are important in the design of the application device. The sedimentation experiments for MRF samples are performed to check the stability of the MRF each day. With the basic rheological properties and sedimentation experiments, it is clearly demonstrated that the bidisperse MR suspension with a precise weight fraction has high yield stress and low sedimentation stability, which shows practical feasibility.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call