Abstract

In this study, the rheological properties and an application of bi-dispersed magnetorheological fluid (MRF) based on plate-like iron particles are experimentally investigated. A bi-dispersed MR Fluid is prepared using two different micron-scale sizes of plate-like iron particles. In the absence of a magnetic field, the properties of the fluid are isotropic. Upon the application of a magnetic field, the magnetized particles form a chain aligned in the direction of the field, which promotes the appearance of a yield stress. The reversible transition from solid to liquid is the basic requirement of MR applications. Due to the anisotropy in the shape and formation of a less compact structure in the iron plate-like particles, weak sedimentation and good redispersibility of the proposed MR fluid are created. The physical properties of the proposed MR fluids are evaluated and applied to the design of a small-sized controllable MR vibration damper, which can be used for vibration control of a washing machine. The MR damper is a semi-active device that dissipates energy during vibration motion to increase the stability of the application system. Three different weight fractions of the bi-dispersed MR fluids are prepared, and their rheological properties are presented and discussed. Based on their rheological properties, the figures of merit of the proposed MR fluids are derived. A comparison of these figures of merit gives the nominal behavior of the MR fluids, which are important in the design of the application device. A stability test is also performed to check the settling rate of MR fluids per day. The change in damping force due to the problem of particles settling in the MRF and the field-dependent damping force are measured with the MR damper operated just after filling the MRF and with the MR damper operated after waiting for 48 h after filling. With basic rheological properties and outstanding mechanical properties, it is clearly demonstrated that the proposed MR fluid which has a precise weight fraction can be applicable to controllable MR damper for vibration control.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call