Abstract

Granular materials are a simple example of a Cosserat continuum in that the average particle rotations may differ from the rotation of the average deformation. In the absence of couple stress, this difference insures that the stress is symmetric. This has been shown in theories that assume that the displacement at particle contacts is given by the average deformation and spin. Here, we indicate how the difference between the average rotation of the particles and the average rotation of the deformation can be determined when fluctuations in particle displacements and rotations satisfy local force and moment equilibria in a random aggregate of identical spheres. The predictions based on this model are in better agreement with numerical simulation than that given by the simple average strain theory.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.