Abstract

The structure of shear bands in granular materials was investigated by numerically simulating an idealized assembly of two-dimensional particles. Flexible stress-controlled boundaries were used instead of periodic boundaries to avoid constraining the motion of particles within the tested specimen. The particle displacement, particle rotations and rotations of the particle neighborhoods (macro-rotation) were examined within the shear band. The shear band width was found to decrease with axial strain from 18 and 15 times the average particle radius. The particle rotations and macro-rotations were concentrated inside the shear bands. The numerical simulations suggest that the particle rotations are induced by macro-rotations, and support the use of the micropolar theory for examining instable phenomena within granular materials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call