Abstract

In this article we report the influence of surface oxides and relative humidity on the nanomechanical response of hydrophobic and hydrophilic Si surfaces. Depth-sensing nanoindentation combined with force modulation enabled measurement of surface forces, surface energy, and interaction stiffness prior to contact. Several regimes of contact were investigated: pre-contact, apparent contact, elastic contact, and elasto-plastic contact. Both humidity and surface preparation influenced the surface mechanical properties in the pre- and apparent-contact regimes. Meniscus formation was observed for both hydrophobic and hydrophilic surfaces at high humidity. Influence of humidity was much less pronounced on hydrophobic surfaces and was fully reversible. In the elastic and elasto-plastic regimes, the mechanical response was dependent on oxide layer thickness. Irreversibility at small loads (300 nN) was due to the deformation of the surface oxide. Above 1 μN, the deformation was elastic until the mean contact pressure reached 11 GPa, whereby Si underwent a pressure-induced phase transformation resulting in oxide layer pop-in and breakthrough. The critical load required for pop-in was dependent on oxide thickness and tip radius. For thicker oxide layers, substrate influence was reduced and plastic deformation occurred within the oxide film itself without pop-in. Elastic modulus and hardness of both the oxide layer and Si substrate were measured quantitatively for depths <5 nm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.