Abstract

Modeling and simulation of gene-regulatory networks (GRNs) has become an important aspect of modern computational biology investigations into gene regulation. A key challenge in this area is the automated inference (reverse-engineering) of dynamic, mechanistic GRN models from time-course gene expression data. Common mathematical formalisms used to represent such models capture both the relative weight or strength of a regulator gene and the type of the regulator (activator, repressor) with a single model parameter. The goal of this study is to quantify the role this parameter plays in terms of the computational performance of the reverse-engineering process and the predictive power of the inferred GRN models. We carried out three sets of computational experiments on a GRN system consisting of 22 genes. While more comprehensive studies of this kind are ultimately required, this computational study demonstrates that models with similar training (reverse-engineering) error that have been inferred under varying degrees of a priori known topology information, exhibit considerably different predictive performance. This study was performed with a newly developed multiscale modeling and simulation tool called MultiGrain/MAPPER.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.