Abstract

The work aims to study the role of NBR-g-GMA compatibilizer on the morphology and mechanical characteristics of PET/PC/NBR ternary blends. The compatibilizer content and amount of constitutive polymers are changed to correlate morphology development with mechanical properties. Various ternary samples are prepared using a twin-screw extruder whereat weight percent of rubbery dispersed phase (NBR+NBR-g-GMA) is changed. Analyzing the morphology of produced samples and interpretation of mechanical properties corroborated the role of the mentioned factors on the type of morphology and also the size of both individual and composite domains in these sorts of ternary blends. Based on this attempt, the mechanical properties of 50/50 blends of NBR/NBR-g-GMA, showed maximum toughness value compared to pure PET specimen. Also, the results revealed that by increasing the rubber content, the rodlike structures were disappeared; besides, toughness was increased. On the contrary, by increasing PC content, rodlike structures have seen by morphological study; however, core-shell droplets formed in the blend structure caused enhancing the impact strength and reducing Young's modulus. Ultimately, the ternary blend of 63/7/30 of PET/PC/ (NBR+NBR-g-GMA) revealed the best mechanical properties due to proper interaction between the PET matrix and rubbery domains in the presence of reactive compatibilizer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.