Abstract

Salt precipitation can occur in saline aquifers when the pore-fluid concentration exceeds saturation during carbon dioxide sequestration, especially in the dry-out region closest to the wellbore. Results from uniaxial and triaxial compression tests, creep tests, and poromechanical tests indicate that NaCl crystallization in pores enhances the compressive strength and bulk modulus under the given confining pressure, and reduces creep. In addition, it makes the pore liquid pressure in the sandstone less sensitive to changes in the hydrostatic stress under undrained conditions. A poro-viscoelastic model with crystals in the pores is proposed to quantitatively estimate the influence of in-pore NaCl crystallization on the long-term mechanical behavior of sandstone. By considering the thermodynamics of crystallization, a geometrical model of a crystal in a pore space is applied to the quasi-static equilibrium state of the crystallization. The solid–liquid interfacial energy is introduced to provide a convenient approach to couple the mechanical properties of sandstone (as a porous material) and the thermochemistry of the in-pore NaCl crystallization. By adding the solid–liquid interfacial energy, the Clausius–Duhem inequality for the skeleton is established for the viscoelasticity based on the proposed geometrical model of a crystal in the pore space. The constitutive equations are deduced from the free energy balance relationship to evaluate the influence of crystallization on the effective stress in terms of the solid–liquid interfacial energies and the pore-size distribution. By comparing the model’s output with the test results, it is found that the poro-viscoelastic model describes the influence of in-pore NaCl crystallization on the long-term mechanical behavior of the sandstone reasonably well.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.