Abstract

The use of discrete-element modelling (DEM) to simulate the behaviour of a highly idealized bituminous mixture under uniaxial and triaxial compressive creep tests is investigated in this paper. The idealized mixture comprises single-sized spherical particles (sand) mixed with bitumen and was chosen so that the packing characteristics are known and the behaviour of the mixture is dominated by the bitumen. The bitumen is represented as shear and normal (tensile and compressive) contact stiffnesses. Numerical sample preparation procedures for specimens containing spherical particles or clumps have been developed to ensure that the final specimen is isotropic and has the correct volumetric proportions. An elastic contact was used for the compressive normal contact stiffness and a viscoelastic contact was used for shear and tensile normal contact stiffness. Simulation results show that the idealized mixture is found to dilate when the ratio of compressive to tensile contact stiffness increases as a function of loading time. Uniaxial and triaxial viscoelastic simulations have been performed to investigate the effect of stress ratio on dilation and the numerical results have been verified with experimental data. The effects of introducing a proportion of frictional contacts and a more complex particle shape (clump) on dilation have been examined.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call