Abstract

Acute kidney injury (AKI) is a severe clinical disease with extremely high morbidity and mortality. It is challenging to find a simple method for early detection of AKI and monitoring the treatment results. Renal tubular damage and inflammation are early events in AKI. Renal tubular damage is conducive to the accumulation of small-sized nanoparticles in the kidney, and inflammation is related to the excessive production of H2O2. Recent studies proved that chiral molecule modification of nanomaterials is a powerful strategy to regulate their biodistribution. Thus, L-serine and D-serine modified poly(amidoamine) (PAMAM) dendrimers were synthesized and used as fluorescent probe (NPSH) carriers to obtain L-SPH and D-SPH, respectively. D-SPH has a strong accumulation capability in the kidney of AKI mice. Then, the H2O2 fluorescent probe can detect the excessively produced H2O2 to generate fluorescence to diagnose AKI. Subsequently, the anti-inflammatory drug manganese pentacarbonyl bromide (CORM) was loaded in D-SPH to obtain D-SPHC with AKI theragnostic functions. Simultaneously, the D-SPHC fluorescence signal intensity change during the treatment can be used to monitor the recovery process. This study is the first report of chiral materials used in the diagnosis and treatment of AKI.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.