Abstract

Dual-phase microstructures consisting of ferrite with carbides (Mo2C) surrounding equiaxed martensite packets have been developed in two alloys, Fe-O. 2C-4Mo and Fe-O. 2C-2Mo. These alloys were chosen because of the presence of two distinct carbide morphologies: (1) a needle-shaped interphase carbide structure, and (2) a fibrous carbide structure. Isothermal transformations were used to control the carbide morphology and distribution in the ferritic regions of the dual-phase microstructures. In the present research the effects of changes in carbide structure on low cycle fatigue (LCF) and fatigue crack growth (FCG) behavior were studied. Crack initiation was observed at prior austenite grain boundaries in the fibrous microstructure, and along intrusion/extrusion defects in the interphase needle microstructures for LCF tests. TEM studies revealed a carbide free region at prior austenite grain boundaries where initiation occurs for the fibrous case. The cyclic stress/strain response of the ferritic portions of the microstructure is determined by the ability of the carbides to homogenize the strain found there. This affects the stress/strain distribution in the composite ferrite-martensite microstructure by changing the hardness ratio of the two phases and subsequently alters the fatigue crack growth behavior and the macroscopic cyclic stress/strain response. Strain localization was also found to affect the roughness induced closure found for fatigue crack growth tests for low R tests (R = 0.1).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.