Abstract

AbstractThis paper briefly considers the method of simulating gunfire damage to a wing and outlines the key basic assumptions used in modelling. The results of qualitative and quantitative investigations into the aerodynamic characteristics of a wing damaged at quarter chord are then presented. The results are discussed in terms of flow mechanisms, changes to surface pressure distributions and increments in lift, drag and pitching moment coefficients. For the damaged wing, the influence on force and moment coefficients was attributed to flow through the damage. This through flow was driven by the pressure differential between the upper and lower wing surfaces, and took one of two forms. The first form was a ‘weak-jet’ which formed an attached wake and resulted in small changes in force and moment coefficients. The second form resulted from either increased incidence, or damage size. This was the ‘strong-jet’, where through flow penetrated into the freestream flow, resulting in separation of the oncoming surface flow, and the development of a larger separated wake with reverse flow. The effect on force and moment coefficients was significant. The paper also compares the structure of the damage through flow with previously published results for jets in crossflows. Many similarities in the flow features were identified, although there were significant differences in the surface pressure distributions for the two cases.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.