Abstract
Abstract This paper develops a novel full-state-constrained intelligent adaptive control (FIAC) scheme for a class of uncertain nonlinear systems under full state constraints, unmodeled dynamics and external disturbances. The key point of the proposed scheme is to appropriately suppress and compensate for unmodeled dynamics that are coupled with other states of the system under the conditions of various disturbances and full state constraints. Firstly, to guarantee that the time-varying asymmetric full state constraints are obeyed, a simple and valid nonlinear error transformation method has been proposed, which can simplify the constrained control problem of the system states into a bounded control problem of the transformed states. Secondly, considering the coupling relationship between the unmodeled dynamics and other states of the controlled system such as system states and control inputs, a decoupling approach for coupling uncertainties is introduced. Thereafter, owing to the employed dynamic signal and bias radial basis function neural network (BIAS-RBFNN) improved on traditional RBFNN, the adverse effects of unmodeled dynamics on the controlled system can be suppressed appropriately. Furthermore, the matched and mismatched disturbances are reasonably estimated and circumvented by a mathematical inequality and a disturbance observer, respectively. Finally, numerical simulations are provided to demonstrate the effectiveness of the proposed FIAC strategy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.