Abstract

The article discusses an effective, in comparison with common, technology of manufacturing chromium bronze electrodes for resistance projection welding of reinforcing bars. Within the framework of this technology, a method for preparing a melt with alloying with a multicomponent element, including basic elements, a matrix of copper powder and a filler of nanostructured chromium particles, is considered. The technology is based on a combined molding-plastic deformation process and makes it possible to obtain a finished resistance welding electrode of type D in one operation. The results of microstructural, X‑ray micro-spectral and local energy dispersive (micro) analysis of electrode samples obtained by different technologies, explaining the main nature of the loss of electrode performance, are presented. The results of fractographic studies of the contact surface of the electrodes are considered. Electrical conductivity and mechanical properties were studied for all electrode samples. The results of tests on a resistance welding machine with an assessment of the wear of the electrodes and the reasons for their failure are presented

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.