Abstract

Computer simulations of an argon fcc crystal fragment with embedded water clusters of different sizes are performed using the quantum mechanical DFT/M06-2X method. The effect of the argon matrix on the structural, energy, and spectral parameters of individual water clusters are investigated. The formation energies of (H2O)n@Arm complexes, as well as deformation energies of water clusters and of the argon crystal involved in the embedment, are computed for n = 1–7. Matrix shifts of the IR vibrational frequencies of water clusters isolated in argon matrices are predicted based on the results of the calculations. The predictions indicate a possibility of the formation of small stable water complexes in low-temperature argon matrices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.