Abstract

The paper is a sequel to an earlier work by Sorokes et al. 1998, “Investigation of the Circumferential Static Pressure Non-Uniformity Caused by a Centrifugal Compressor Discharge Volute.” The earlier work described experimental and computational fluid dynamics analyses of the non-uniform static pressure distortion caused by the discharge volute in a high pressure, centrifugal compressor with vaneless diffusers. This paper describes additional testing and analytical work done using low solidity vaned diffusers (LSD’s) in place of select vaneless diffusers to determine the alternate diffuser’s effectiveness in eliminating or reducing the magnitude of the non-uniform pressure field. As in the earlier studies, the experiments described in this paper were done using a heavily instrumented gas re-injection compressor operating at over 6000 psia discharge pressure. Instrumentation was installed to measure static, total, and dynamic pressure as well as impeller strain and mechanical vibrations. A brief description of the compressor and instrumentation are provided. Concurrent with the experimental work, CFD runs were completed to study the effect of the alternate vaned diffusers. The CFD pressure profile trends agreed well with the experimental results and provided analytical corroboration for the conclusions drawn from the test data. Conclusions are drawn regarding: a) the effectiveness of the LSD’s on the pressure non-uniformity; b) the associated effects on the measured dynamic strains in the impellers; and c) the usefulness of computational fluid dynamics (CFD) in assessing the aerodynamic forces associated with the non-uniformity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.