Abstract
The phylogeographic patterns of small mammals in southern Africa are frequently disjunct. This pattern is predominately attributed to vicariant geographical barriers coupled to climate driven diversification. To gain further insights into this hypothesis, we embarked on a comparative mtDNA phylogeographic study of two common rodent species in southern Africa, Mastomys natalensis and Mastomys coucha. Parsimony haplotype networks and SplitsTrees of mtDNA cytochrome oxidase I data showed a large degree of haplotype sharing throughout the sampling range. Within southern Africa, we found no conclusive evidence to support geographic vicariance as a contributing factor towards Mastomys speciation. We proposed that the regional phylogeographic structures detected for M. natalensis and M. coucha are the result of weak isolation by distance coupled to repeated expansions and contractions of suitable habitat. Both species probably survived in multiple refugia during unfavourable periods and mismatch distributions show signs of population expansion. Mitochondrial DNA nucleotide diversity values (π) show marked differences between the two species (M. natalensis: 0.003 and M. coucha: 0.468), and M. coucha also shows a higher level of population differentiation in AMOVA analyses. These differences are most likely due to life history discrepancies between the two species. Mastomys coucha is regarded to be more of a habitat specialist when compared to M. natalensis, and this probably places a higher constraint on M. coucha dispersal abilities. © 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 114, 58–68.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have