Abstract
Spectroscopic measurements in the UV/VIS region show reduced transmission through laser-induced backside wet etching (LIBWE) of fused silica. Absorption coefficients of up to 10 5 cm −1 were calculated from the transmission measurements for a solid surface layer of about 50 nm. The temperatures near the interface caused by laser pulse absorption, which were analytically calculated using a new thermal model considering interface and liquid volume absorption, can reach 10 4 K at typical laser fluences. The high absorption coefficients and the extreme temperatures give evidence for an ablation-like process that is involved in the LIBWE process causing the etching of the modified near-surface region. The confinement of the ablation/etching process to the modified near-surface material region can account for the low etch rates observed in comparison to front-side ablation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.