Abstract

The hypothesis that levels of gene flow among populations are correlated with dispersal ability has typically been tested by comparing gene flow among species that differ in dispersal abilities, an approach that potentially confounds dispersal ability with other species-specific differences. In this study, we take advantage of geographic variation in the dispersal strategies of two wing-dimorphic planthopper species, Prokelisia marginata and P. dolus, to examine for the first time whether levels of gene flow among populations are correlated with intraspecific variation in dispersal ability. We found that in both of these coastal salt marsh-inhabiting species, population-genetic subdivision, as assessed using allozyme electrophoresis, parallels geographic variation in the proportion of flight-capable adults (macropters) in a population; in regions where levels of macroptery are high, population genetic subdivision is less than in regions where levels of macroptery are low. We found no evidence that geographic variation in dispersal capability influences the degree to which gene flow declines with distance in either species. Thus, both species provided evidence that intraspecific variation in dispersal strategies influences the genetic structure of populations, and that this effect is manifested in population-genetic structure at the scale of large, coastal regions, rather than in genetic isolation by distance within a region. This conclusion was supported by interspecific comparisons revealing that: (1) population-genetic structure (GST ) of the two Prokelisia species correlated negatively with the mean proportion of flight-capable adults within a region; and (2) there was no evidence that the degree of isolation by distance increased with decreasing dispersal capability. Populations of the relatively sedentary P. dolus clustered by geographic region (using Nei's distances), but this was not the case for the more mobile P. marginata. Furthermore, gene flow among the two major regions we surveyed (Atlantic and Gulf Coasts) has been substantial in P. marginata, but relatively less in P. dolus. The results for P. marginata suggest that differences in the dispersal strategies of Atlantic and Gulf Coast populations occur despite extensive gene flow. We argue that gene flow is biased from Atlantic to Gulf Coast populations, indicating that selection favoring a reduction in flight capability must be intense along the Gulf. Together, the results of this study provide the first rigorous evidence of a negative relationship within a species between dispersal ability and the genetic structure of populations. Furthermore, regional variation in dispersal ability is apparently maintained by selective differences that outweigh high levels of gene flow among regions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call