Abstract
The waste heat of automotive exhaust gas would be directly transferred into electricity by thermoelectric modules (TEM) because of the temperature difference between heat exchanger and water tank. For the vehicle thermoelectric generator (TEG), the electrical power generation was deeply influenced by temperature difference, temperature uniformity and topological structure of TEG. In previous works, increasing the difference of temperature would significantly enhance the power generation of TEG and inserted fins were always applied to enhance heat transfer in heat exchanger. However the fins would result in a large unwanted back pressure which went against to the efficiency of the engine. In current studies, in order to enhance heat transfer rates and to avoid back pressure increase, a heat exchanger containing cylindrical grooves (the depth-to-width ratio is 0.25) on the interior surface of heat exchanger was proposed. The cylindrical grooves could increase the heat transfer area and enhance the turbulence intensity, meanwhile there was no additional inserts in the fluid to block the flow. The surface temperatures of water tank and heat exchanger with three internal structures, such as grooved surface, flat surface and inserted fins, were studied by numerical simulation at each row of thermoelectric modules. The results showed that comparing to other structures, heat exchanger with cylindrical grooves could improve the TEG efficiency at a low back pressure. The influence of the channel height on the TEG performance was investigated and the TEG with a channel height of 8mm showed the best overall performance. It was also found that a portion of heat exchanger uncovered with thermoelectric modules at the downstream section could make the upstream section hotter and make full use of each TEM.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have