Abstract

Differential scanning calorimetry, and, in some supplementary experiments, X-ray diffractometry and cryomicroscopy, were applied to study the influence of concentration (< 70 wt%) and cooling/warming rates (< 320 K/min) on ice formation in aqueous solutions of HES. The calorimetric measurements of the quantity of crystallizing water indicated that a mass fraction ϑ = 0.522 (i.e., grams water per gram HES) remained unfrozen. These results are in good agreement with our earlier extrapolations from ternary phase diagram data and tend to support the proposed cryoprotective mechanism. The value of ϑ determined during warming was essentially independent of composition up to the corresponding saturation concentration. It was observed that solutions containing 60 wt% HES or more remained wholly amorphous during cooling even at rates as low as 2.5 K/min (down to 120 K). Such glassy solutions are subject to devitrification at temperatures T d which depend on the warming rate. The concentrations close to 55 wt% HES mark a transitional range exhibiting two crystallization peaks, probably due to different mechanisms of nucleation, the portion of ice formed during cooling being related to the imposed cooling rate. All samples showed a recrystallization transition at 257.5 K which was also observed cryomicroscopically. Glass transitions, however, could not be detected by the methods applied in this study. The X-ray diffraction patterns contained the structure of only one solid phase, namely hexagonal ice. A comparison of various modifications of HES, PEG, and PVP involving bound water and melting temperature did not reveal marked differences. Minimum initial HES concentrations preventing lethal salt enrichment were computed for both binary and ternary mass fractions of NaCl as biologically relevant parameters, yielding 24.1 and 10.8 wt% HES, respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call