Abstract
A theoretical approach has been used to show that, except for certain types of reaction mechanism, the ease with which it is possible to distinguish the form of the reaction mechanism by the reduced-time plot method depends particularly on the rate of transfer of heat into the sample. The original reduced-time plots [1] were calculated from model equatioons which assume that the sample is, from the outset, at a fixed temperature and remains under isothermal conditions throughout the reaction. The variations produced in the appearance of reduced-time plots when the sample is programmed to rise to a given fixed temperature through various temperature schedules have been investigated. It is shown that even relatively rapid temperature rises can produce distortion of the reduced-time plots for various reaction equations. If the reaction mechanism is known, however, fairly accurate values of the activation energy for the reaction can be determined, even when the furnace used has relatively poor heat-transfer characteristics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.