Abstract
The purpose of this study was to evaluate the influence of grain size and air abrasion on low-temperature degradation (LTD) of yttria stabilized tetragonal zirconia polycrystalline (Y-TZP). Disc-shaped specimens were sintered at 1350, 1450, and 1600°C. Air abrasion was performed with different abrasive particles. The specimens were stored for 2 h at 134°C under 2.3 bar water vapor pressure. All specimens were characterized by X-ray powder diffraction analysis (XRD), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), and field emission scanning electron microscopy (FESEM). Y-TZP sintered at a temperature of 1350°C did not undergo the t-m phase transformation during accelerated aging. The diffusion-controlled t-m phase transformation initiated with the specimens sintered at 1450°C. This transformation was remarkable for the specimens sintered at 1600°C. X-ray photoelectron spectroscopy (XPS) measurements did not confirm the generation of Zr-OH and Y-OH bonds. No increase of yttrium concentration on the grain boundaries of Y-TZP was detected, which could be responsible for the destabilization of dental zirconia ceramics. A slight increase of diffusion-controlled t-m phase transformations was observed for all abraded specimens sintered at 1350 and 1450°C. The size of abrasive particles did not play a crucial role on LTD of Y-TZP. The retardation of diffusion-controlled t-m phase transformation was evident for all abraded specimens sintered at 1600°C by comparison to non-abraded specimens. The LTD of Y-TZP can be suppressed when the sintering temperature is set between 1350 and 1450°C.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Biomedical Materials Research Part B: Applied Biomaterials
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.