Abstract

This paper evaluates the amount of KMnO4 in simulated concrete pore solution (pH 12.8) on the corrosion behaviour of hot-dip galvanized steel (HDG). In the range of used MnO4- (10-4, 10-3, 10-2 mol·L-1), corrosion behaviour is examined with regard to hydrogen evolution and composition (protective barrier properties) of forming corrosion products. The corrosion behaviour of HDG samples is evaluated using Rp/Ecorr and EIS. The composition of corrosion products is evaluated using SEM, XRD, XPS and AAS. The effective MnO4- ion concentration to prevent the corrosion of coating with hydrogen evolution is 10-3 mol·L-1; lower concentrations only prolong the time to passivation (corrosion with hydrogen evolution). The highest used MnO4- concentration ensures corrosion behaviour without hydrogen evolution but also leads to the formation of less-protective amorphous corrosion products rich in MnII/MnIII phases.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call