Abstract

Radiative shocks are shocks in a gas where the radiative energy and flux coming from the very hot post-shock material are non-negligible in the shock's total energy budget, and are often large enough to heat the material ahead of the shock. Many simulations of radiative shocks, both in the contexts of astrophysics and laboratory experiments, use a grey treatment of radiative transfer coupled to the hydrodynamics. However, the opacities of the gas show large variations as a function of frequency and this needs to be taken into account if one wishes to reproduce the relevant physics. We have performed radiation hydrodynamics simulations of radiative shocks in Ar using multigroup (frequency dependent) radiative transfer with the heracles code. The opacities were taken from the odalisc database. We show the influence of the number of frequency groups used on the dynamics and morphologies of subcritical and supercritical radiative shocks in Ar gas, and in particular on the extent of the radiative precursor. We find that simulations with even a low number of groups show significant differences compared to single-group (grey) simulations, and that in order to correctly model such shocks, a minimum number of groups is required. Results appear to eventually converge as the number of groups increases above 50. We were also able to resolve in our simulations of supercritical shocks the adaptation zones which connect the cooling layer to the final post-shock state and the precursor. Inside these adaptation zones, we find that the radiative flux just ahead of the shock in one or several high-opacity groups can heat the gas to a temperature higher than the post-shock temperature. Through the use of Hugoniot curves, we have checked the consistency of our radiation hydrodynamics scheme by showing that conservation of mass, momentum and energy (including radiative flux) holds throughout the computational domain for all our simulations. We conclude that a minimum number of frequency groups are required to correctly simulate radiating flows in gases whose opacities present large variations as a function of frequency.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.